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Introduction
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YOUR WAY TC SUCCES!

» Chemical Reaction Engineering (CRE) emphasizes
safety In reactor design and operation.

* This lecture focuses on case studies of industrial
accidents, exploring causes and preventive
measures to ensure safety in chemical processes.
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Topics to be Addressed

bl ] gl

* - Case Studies: Ammonium Nitrate, Monsanto, and
T2 Labs Explosions

* - Energy Balance and Heat Effects in Reactors
» - Safety Mechanisms and Preventive Measures
o - Lessons Learned from Industrial Accidents
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Objectives -

By the end of this lecture, students will be able to:

» - Understand the principles of reactor safety and
energy balance.

* - Analyze causes of industrial accidents and their
prevention.

* - Apply safety measures in reactor design and
operation.

* - Learn from case studies to mitigate risks in
chemical processes.
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Introduction b o

» Understanding energy balance, heat effects, and
safety mechanisms is critical for preventing
disasters.

* This session covers notable accidents such as the
ammonium nitrate explosion, Monsanto explosion,
and T2 Laboratories explosion, and lessons learned
from these events.
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CSTR with Heat Effects
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Half-pipe
jacket
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YOUR WAY TC SUCCESS

Conventional
. jacket



 Reviewlastlectre <M
Energy Balance for CSTRs

<
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YOUR WAY TC SUI

dl’
s [ R@)

G(T ) = (rA V)[AH Rx]
R(T)=C, (+x)|[T-T.]

_ UA T_]:)+K‘7;
FAOCPO 14k
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Reviewlastlecure < M
Energy Balance for CSTRs

<
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YOUR WAY TC

R(T)=Cp 1+ KT~ T.]

R(T) Increasing T,

T
Variation of heat removal line with inlet temperature.

COLLEGE OF ENGINEERING - dsssyml| 8414



<

Reviewlastlectre < &
Energy Balance for CSTRs oo
R(T)=C, (+x)|T-T]

K=00

=
R(T)

InCcrease K

Ta TO/ T
Variation of heat removal line with k (kK=UA/CgyFx,)
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Review Last Lecture

Multiple Steady States (MSS) bﬁf‘
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Increasing T

G{T)

T
Variation of heat generation curve with space-time.

COLLEGE OF ENGINEERING - dwssiml| 4414

Tikrit University - cu)$5 asola ‘

10



Gas Flow in a PBR with Heat Effects

A< B

G(T) & A(T) (calimol)

§
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V= V,C o X X = K
KC Ao 1—X—x 1+ 1k 1+1
Ke Ke
G=—AH, X = —AH, K

1+ rk(1+ 1}
Ke

R(T)=Col+x)T-T¢]
B T, +xT,
o 1+x

T, =310

310 330 350 370 3%0 410
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Gas Flow in a PBR with Heat

<

Effects S
A—B
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Gas Phase Heat Effects” <

4 (
Ham wlae 2

$ o Gwaunll
2.
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Effect of adding inerts on adiabatic equilibrium conversion

Adiabatic:
X

®, =
—

._—Adiabatic Equilibrium

Conversion

—AH p,
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Adiabatic Exothermic Reactions -4

kcal

mol

The heat of reaction for endothermic reaction is positive, i.e.,

Energy Balance :

~ AHRX and X = (CPA T CP@IXTO -T)
Cp, +O,Cp. AHp,

—
I
o

We want to learn the effects of adding inerts on conversion. How the
conversion varies with the amount, i.e., ®,, depends on what you vary and
what you hold constant as you change 0,.
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A. First Order Reaction

eumllru»b
dX _ —TA
Combining the , rate law and stoichiometry
kCAog(1—X
dX AO( ) k (1 X)
dV UocAO

Two cases will be con3|dered
Case 1 Constant v,, volumetric flow rate
Case 2: Variable v,, volumetric flow rate
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A.1. Liquid Phase Reaction

Ta \ Ta }ﬁTao
Fi(,@) T +—T
TO Ta _1/

V=0 V=V,

alaal @lf ezigybs

YOUR WAY T'C SUCCES

For Liquids, volumetric flow rates are additive.

U :UA0+UIO :UA0(1+®I)
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Effect of Adding Inerts to an Endothermic Adiabatic Reaction

What happens when we add Inerts, i.e., vary Theta 1??? It all dependsoml‘v’“fu‘i’?

what you change and what you hold constant!!!

O,

%l 1SO ,4®I
T k 1SO 1
% i+0))
V V 9,
X
k
1+ 0,
Y
COLLEGE OF ENGINEERING 1 drs =ml{ 41 ®10pr ©,
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A.1.a. Case 1. Constant v, o

To keep v, constant if we increase the amount of Inerts,
l.e., Increase O, we will need to decrease the amount of
A entering, i.e., v,. S0 0, T then vy v
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Variable v, s
T % K
X k(1-X) k(-X) i
dV vy va(1+0)) y =
/ k
Kk m/\
Q Q
x/\
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A.2. Gas Phase

abal o] esayha

YOUR WAY TC SUCCESS

Without Inerts With Inerts and A
Chg Fio— Caal
Fpo—s—A @ )—V AUI_O )_>
A PA’ TA P|, T|
CTA FAO_‘ CT|
Fao PA Fri  FaotFo _ P
Cra=—"=Cpro=5— Cri= = =
UA RTA UI UI RTI

Taking the ratio of C;, to Cy

L A RT A
Frp Py Tj
Fra Pr Ty

Solving for v,

UI:UA

We want to comloare what happens :«be& Inerts and A are fed to the case when

CQIHEGEQE ENGINEERING - dus



Nomenclature note: Sub | with Inerts | and reactant A fed
Sub A with only reactant A fed

YOUR WAY TC SUCCESS

Fr, = Total inlet molar flow rate of inert, |, plus reactant A, Fy, = Fpao + Fyg
F.a = Total inlet molar flow rate when no Inerts are fed, i.e., F;5 = Fag
P,, T, = Inlet temperature and pressure for the case when both Inerts (I) and A are fed

P., Tp = Inlet temperature and pressure when only A is fed

Fao
Cao = Concentration of A entering when no inerts are presents Cao= LA
_Pa
C;, = Total concentration when no inerts are present RT,
_ DB

C,, = Total concentration when both | and A are present RT;

| | . _ _Fao
Cao = Concentration of A entering when inerts A are entering  — oy

v, = Entering volumetric flow rate with both Inerts (I) and reactant (A)
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A.2.a. Case 1

R
Maintain constant volumetric flow, v,, rate as inerts are added. l.e., v, =
v, = V. Not a very reasonable situation, but does represent one extreme.
Achieve constant v, varying P, T to adjust conditions so term in

brackets, [ ], is one.

P, T
1+0,)-2 1 |=]
{(+ I)PI TJ

For example if ®, = 2 then v, will be the same as v,, but we need the
entering pressures P, and P, to be in the relationship P, = 3P, with T, =T,
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A.2.a. Case 1

abal o] esayha

YOUR WAY TC SUCCESS

That is the term in brackets, [ ], would be 1 which would
keep v, constant with v, = v, = v,. Returning to our
combined mole balance, rate law and stoichiometry

dX k(1-X)
v Vg
k / XK X/
Q Q Q
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A.2.b.Case 2: Variable v, Constant T, Pi.e., P, =P,, T, =T,

bl gl sagla

YOUR WAY TC SUCCESS

o) = UAh: VA (Fao +Fio) _ o
Fra Fao
v =V (1+0y)

X1k oy
dVv UA1+®

S5 NEL
N\

A(1+0y)

V Q| Q

Q
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YOUR WAY TC SUCCESS

Inerts Plus A
Flo— coy
_ A0l IO ) >
= b T G
= Fao—

o FA0(1+ ®1)
TI =
L

dX _ —I'A _ kCiOI (1 — X)2
dV  Fyy Fao
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alail ol il
Py T;

Py Ty
CZy  (Fao/vi) F F
Aol _ Fao/V1) _ Fao _ A0

Fao Fao L7 p V(T )V
! UA'UA(1+®I>2 A 1

>
_ Cao (PI TAJ
UA(1+®I)2 PA TI
dX k CAO PI TA 2 2
_ . (1-X)
dV (1+0;) va \Pa T

v =V, (1+0y)
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YOUR WAY T'C SUCCES

Massive blast at Terra plant kills four.
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Example 1: Safety in Chemical Reactors

alasl ol ssivya
H,O0
—> Gas
N,O
0 —_—
Ty =200°F o0 0ok /F — @ P
|
m o = 3101b/h Liquid / A \
83%NH,NO; — l
510°F ‘
<+ 0€E—x T,o
NH,NO,§
Ta
M =500 1b

NH,NO; = N,O + 2H,0
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Example 1: Safety in Chemical Reactors

abul ] iy

YOUR WAY T'C SUCCES

Only liquid A in the vat as the product gases N,O
and H,O escape immediately after being formed.

4T~ Q,-Q,
dt  N,C.,

Q, = (raV)(AHg,)

Qr = FAO[CPA(T _To) +HB(H B HBO)]+UA(T _Ta)
COLLEGE OF ENGINEERING - dssaiml| a4l&

U e R -l pa -



Unsteady State Energy Balance

<

Os | % _
d_T _ (AH RX )(rAV)_ I_FAO Z®iCPi (T o To )"' (UA(T o Ta ))
dt >N.C,
Adiabatic
Q; =Fo[Cp, (T—660)+ Oy (1134+Cp, (T -960))]
FAO — O

dT _ (-AHg, }(-TAV) T
dt 2N;Cp.

If the flow rate is shut off, the temperature will rise (possibly to point of explosion!)
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Case 2 — Monsanto Chemical g
Company i

» Keeping MBAs away from Chemical Reactors

The process worked for 19 years before “they” showed
up!

Why did they come?

What did they want?
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Nitroanline Synthesis Reaction

all @lf stagys
NO, NO,
Cl NH.,
+ 2NH; —— +  NH,CI
ONCB +  AmMmonia —p Nitroanaline + Ammonium
Chloride
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Nitroanline Synthesis Reaction

abail @] etk
NH; in H,O —
ONCB
| Autoclave
175 °C
~550 psi
| . . NH, R Filter
O-Nitroaniline Separation Press
Product Stream

To Crystallizing Tanks
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Nitroanline Synthesis Reactor

abal o] esayha

YOUR WAY TC SUCCESS

Old

3 kmol ONCB
43 kmol Ammonia
100 kmol Water
V=3.25m3
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Same Nitroanline Synthesis

Reaction

NO, NO,
Cl NH.,
+ 2NH; —— +  NH,CI
ONCB +  AmMmonia —p Nitroanaline + Ammonium
Chloride

Batch Reactor, 24 hour reaction time

Management said: TRIPLE PRODUCTION

COLLEGE OF ENGINEERING - dwssiml| 4414
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CMeAstle: D

Nitroanline Syn&hesis Reactor wuie

New

9 kmol ONCB
33 kmol Ammonia
100 kmol Water
V=5m3
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Batch Reactor Energy Balance
Q, Q.

| \

[ |
dT  (r,V)(AH,) — UA(T-T,)
dt ~ NuCon + NooCop + NuyCo

bl gl sagla

YOUR WAY T'C SUCCES

NCp = N4oCpa + NgoCps + N, C oy

dT _ Qg _Qr
dt NC

p

;COLLEGE OF ENGINEERING - 4



Batch Reactor Energy Balance
daT  Q, —Q,

dt  NC,

The rate of “heat removed’ is

abul ] iy

YOUR WAY T'C SUCCES

Q, =m.C, < (Tal —T)l 1—exp[ _ %A ] > Equation (12-13) p547
C m Pc

C

For high coolant flow rates, mc, the maximum rate of heat removal is
Q, =UA(T-T,)
The rate of “heat generated” is Qg =(r,V)AH_ = (— I‘AV)(— AH RX)
—Ta =K,C,Cp
COLLEGE OF ENGINEERING - 4| syl&s Qy =KiCACe (= AHg,)
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Batch Reactor Energy Balance

Recall dT Q, —Qg
dT  NCp,

abul ] iy

YOUR WAY T'C SUCCES

For isothermal operation at Qr = Qg, T =448 K
Q, = k(448K)C, (1~ X}, ~X)~ AHy,)
Q =Qq

M,C, {(T,, —T) 1—exp[ —UA J - =(0.0001167)C%,(1- X)

m.Cp

C

G —

Vary M o keep “heat removed” equal to “heat generation”
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Isothermal Operation for 45 minutes

At the time the heat exchanger fails
X =0.033,T =448K
Q, =r\VAH_, =3850kcal/min

The maximum rate of removal at T =448K 1is
Q, =UA(T —T,)=35.85(448-298) = 5378kcal / min

Q >Q, Everything is OK
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Adiabatic Operation for 10 minutes

<

abul ] iy

t=45min X =0.033 T =448K
t=55min X =0.0424 T =468K
Q, =6591kcal/min

Q. =6093kcal/min

Q, >Q,
ar _Q, =@, —0.2°C / min
dt  NC,
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Temperature-Time trajectory

ar _Q, =@, = 0.2 °C/min
dt  NC,

alail @] iy

YOUR WAY TC SUCCESS

%) 400 T

Q

2

©

L

Q - Cooling Restoru
E h | Qr 0

O 200 ¥ Isotherma

= Operation w G ~ J

175
{f fuse

9:55 10.40 10.50 midnight 12:18
t=0
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Disk Rupture

abal @l szaggs

YOUR WAY TC SUCCESS

The pressure relief disk should have ruptured when the temperature
reached 265°C (ca. 700 psi) but it did not.

If the disk had ruptured, the maximum mass flow rate out of the
reactor would have been 830 kg/min (2-in orifice to 1 atm).

Q, =m,, AH, +UA(T-T,)

Q, _449000@
min
Q, = 27,460
min

Q, >>> Q,

No explosion

COLLEGE OF ENGINEERING - dssaiml| a4l&
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All the following three things must have
occurred for the explosion to happen

. . &1
1. Tripled Production

2. Heat Exchange Failure ~ &5

3.Relief Valve Failure L %J

COLLEGE OF ENGINEERING - dssaiml| a4l&
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Case 3 — Manufacture of Fuel Additive

<

alaal @lf ezigybs

YOUR WAY T'C SUCCES

Methylcyclopentadiene Manganese Tricarbonyl (MCMT)
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LR
Production of methylcyclopentadienyl manganese tricarbonyl (MCMM
Step la. Reaction between methylcyclopentadiene (MCP) and sodium inagel s <iss
solvent of diethylene glycol dimethyl ether (diglyme, C;H,,05) to
produce sodium methylcyclopentadiene and hydrogen gas:

@—‘+ Na —» Na@+ 1H,

Step 1b. At the end of Step 1a, MnCl, is added to the reactor. It reacts with
sodium methylcyclopentadiene to produce manganese
dimethylcyclopentadiene and sodium chloride:

2 Na = Mn + 2 NaCl

Step 1c. At the end of Step 1b, CO is added. The reaction between
manganese dimethylcyclopentadiene and carbon monoxide produces the
final product, methylcyclopentadienyl manganese tricarbonyl (MCMT), a fuel

additive. ~ ~

COLLEGE OF ENGINEERING - dss=iml| 44l&
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Only consider Step 1

Desired Reaction alail @] stk

@"’+ Na — Na® + 1H,

Undesired Reaction of Dygline

CH; - O—CH, - CH, - O~ CH, — CH,0 ~ CH;——3H, + misc() & (5)

Simplified Model

Let A = methycylcopentadiene, B = sodium, S = Solvent (diglyme), and D = H,.
These reactions are:

(1)A+B— C+1/2D (gas) —115 =-T1g =k ACACh

(2) S —> 3 D (gas) + miscellaneous liquid and solid products —1,q =k,Cq
AHRXIA :_45,400 J/mOI

AHp s =—3.2x10° J/mol
COLLEGE OF ENGINEERING - dsssyml| 8414



mase — Manufacture of Fuel Additive @

alsal @11 e

YOUR WAY TC SUCCESS

Rupture disk
Pressure control
wilve
* Hy
L Hydrogen vent
Gas head
space
_ljﬂfml ng jacket
[:3 am outlet
)
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Case 3 — Manufacture of Fuel Additive

Solution
(1) Reactor Mole Balances

Reactor (Assume Constant Volume Batch)

Liquid
dC,

— = Na
dt

COLLEGE OF ENGINEERING - dsssiml| a4l&
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Case 3 — Manufacture of Fuel Additive

emwll&wb
(2) Rates
Laws:
(1) =1y = kaCaCy (E13-6.11)
Kia=Ape ARt (E13-6.12)
(2) —1hg = kCy (E13-6.13)
ks = Agge 25T (E13-6.14)
Net Rates:
ry =g =1, (E13-6.17)
fg = Ihg (E13-6.18)
Iy = '%"ia +=3ng (gas generated) (E13-6.19)

C°'-'-EG($ s ENGRIERYG - tmreipilagks
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Case 3 — Manufacture of Fuel Additive

bl @lf ety
(4) Energy Balance:
Applying Equation (E13-18) to a batch system (Fp = 0)
Vol iaAHp, 14 + BgAH, -UA|IT-T
dr _ n[ jaDM g 4 T g mzs] [ u) (E13-6.24)

dt NG,

Substituting for the rate laws and 3 N,Cp =1.26x10"J/K

dr _ Vol k14 CaCadHpaia 'kzsfsﬂﬂhzs] ~UA(T-T,) (E13-6.25)
dt 126%107(J/K)

AHRXIA :—45,400 J/mOI
AHp s =—3.2x10° J/mol
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Explosion at T2 Laboratories

I alail o] et

YOUR WAY TC SUCCESS

TiK)

B B B B B B E E B B B

£
a
g
"
B
E
e
el
e
sl
g

Figure E13-6.3(a) Temperature (K) versus time (h) trajectory.

Explosion at T2 Laboratories

& B
T

B &
T

P (atm) = -

15

10+

[i] 1 1 1 1 1 1 1 1 1
090 04 08 12 1a 20 24 28 az a8 40

t (hours)

COLLEGE OF ENGINEE. Fisvre F13-63(0) Pressur (stm) versus time () trajeciory




Summary o

* |n this lecture, we covered:

- Case studies on industrial accidents and their causes.

- Analysis of energy balance and heat effects in
reactors.

* - Importance of safety mechanisms and preventive
measures.

* - Lessons learned to improve reactor safety and
eliability.

* These insights are crucial for designing safe and
efficient chemical processes.
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